Pharmaceutical biotechnology is a relatively new and growing field in which the principles of biotechnology are applied to the development of drugs. A majority of therapeutic drugs in the current market are bioformulations, such as antibodies, nucleic acid products and vaccines
Welcome all readers, viewers, researchers and aspirants to this site for upgrading knowledge and aptitude in pharmaceutical industry oriented clinical research. "If you think Research is Expensive, Try Ineffectiveness in Illness"
Pages
- Home
- About the author
- Ask Your Query -forums
- Articles
- Posts
- FORMS AVAILABLE
- News Updates and Bulletins
- Announcements
- Links
- journals
- Pharm D India
- Pharma Mnemonics
- the New age health advocacy,communication, literacy and social tweetchat Posts
- contact details
- Pharma Corner- Enhancing Profession by Knowledge Interconnection
- Photo and Video Gallery
- Clinically Oriented blogs and news- Clinical Research
- Industry oriented blogs and news
- The International pharmacist
- Number of Publicly Listed pharmaceutical companie...
- Number of Biotechnology companies in India
- number of CROs
- number of Indian Franchises/Subsidiaries/ Corporates & Indian Pharma companies in Clinical Research
- Testimonials
- FPGEE and NAPLEX
- societies,institutions,organizations,associations,confederations and alliances
- Funny Pharmatoons
- Pharmaceutical, medical and clinical councils
- Pharmaceutical, medical and clinical Boards
- Pharmaceutical, medical and clinical licensing exams
- rules , protocols and regulatory affairs
- Achievements
- sams epharmacy cum pharmaclinic cum dic cum pvc- look at my presentations and publications
Showing posts with label bioinformatics biotechnology bioengineering. Show all posts
Showing posts with label bioinformatics biotechnology bioengineering. Show all posts
Tuesday, 31 July 2018
Biotechnology & Pharmaceutical Companies
While biotechnology and pharmaceutical companies both produce medicine,biotechnology companies' drugs have a biological basis, while those of pharmaceutical companies have a chemical basis. Biotechnology companiesuse live organisms or their products, such as bacteria or enzymes, to manufacture their medicines.
A biopharmaceutical, also known as a biologic(al) medical product, biological, or biologic, is any pharmaceutical drug product manufactured in, extracted from, or semisynthesized from biological sources.
The primary difference between biopharmaceuticals and traditionalpharmaceuticals is the method by which the drugs are produced: The former are manufactured in living organisms such as bacteria, yeast and mammalian cells, whereas the latter are manufactured through a series of chemical synthesis.
A biopharmaceutical, also known as a biologic(al) medical product, biological, or biologic, is any pharmaceutical drug product manufactured in, extracted from, or semisynthesized from biological sources.
The primary difference between biopharmaceuticals and traditionalpharmaceuticals is the method by which the drugs are produced: The former are manufactured in living organisms such as bacteria, yeast and mammalian cells, whereas the latter are manufactured through a series of chemical synthesis.
Saturday, 7 July 2018
Relation between pharma and biotech
Relation between pharma and biotech
Unlike in other countries, the difference between biotechnology and pharmaceuticals remains fairly defined in India, with biotech a much smaller part of the economy. India accounted for 2% of the $41 billion global biotech market and in 2003 was ranked 3rd in the Asia-Pacific region and 13th in the world in number of biotech. In 2004-5, the Indian biotech industry saw its revenues grow 37% to $1.1 billion. The Indian biotech market is dominated by bio pharmaceuticals; 76% of 2004–5 revenues came from bio-pharmaceuticals, which saw 30% growth last year. Of the revenues from bio-pharmaceuticals, vaccines led the way, comprising 47% of sales. Biologics and large-molecule drugs tend to be more expensive than small-molecule drugs, and India hopes to sweep the market in bio-generics and contract manufacturing as drugs go off patent and Indian companies upgrade their manufacturing capabilities.[30]
Most companies in the biotech sector are extremely small, with only two firms breaking 100 million dollars in revenues. At last count there were 265 firms registered in India, over 92% of which were incorporated in the last five years. The newness of the companies explains the industry’s high consolidation in both physical and financial terms. Almost 30% of all biotech are in or around Bangalore, and the top ten companies capture 47% of the market. The top five companies were homegrown; Indian firms account for 72% of the bio-pharma sector and 52% of the industry as a whole.[4,46] The Association of Biotechnology-Led Enterprises (ABLE) is aiming to grow the industry to $5 billion in revenues generated by 1 million employees by 2009, and data from the Confederation of Indian Industry (CII) seem to suggest that it is possible.[31]
Comparison with the United States
Government support[edit]The Indian biotech sector parallels that of the US in many ways. Both are filled with small start-ups while the majority of the market is controlled by a few powerful companies. Both are dependent upon government grants and venture capitalists for funding because neither will be commercially viable for years. Pharmaceutical companies in both countries see growth potential in biotechnology and have either invested in existing start-ups or ventured into the field themselves.[3]
The Indian government established the Department of Biotechnology in 1986 under the Ministry of Science and Technology. Since then, there have been a number of dispensations offered by both the central government and various states to encourage the growth of the industry. India’s science minister launched a program that provides tax incentives and grants for biotech start-ups and firms seeking to expand and establishes the Biotechnology Parks Society of India to support ten biotech parks by 2010. Previously limited to rodents, animal testing was expanded to include large animals as part of the minister’s initiative. States have started to vie with one another for biotech business, and they are offering such goodies as exemption from VAT and other fees, financial assistance with patents and subsidies on everything ranging from investment to land to utilities.[32]
The biotechnology sector faces some major challenges in its quest for growth. Chief among them is a lack of funding, particularly for firms that are just starting out. The most likely sources of funds are government grants and venture capital, which is a relatively young industry in India. Government grants are difficult to secure, and due to the expensive and uncertain nature of biotech research, venture capitalists are reluctant to invest in firms that have not yet developed a commercially viable product.[33]
The government has addressed the problem of educated but unqualified candidates in its Draft National Biotech Development Strategy. This plan included a proposal to create a National Task Force that will work with the biotech industry to revise the curriculum for undergraduate and graduate study in life sciences and biotechnology. The government’s strategy also stated intentions to increase the number of PhD Fellowships awarded by the Department of Biotechnology to 200 per year. These human resources will be further leveraged with a "Bio-Edu-Grid" that will knit together the resources of the academic and scientific industrial communities, much as they are in the US.[33]
Foreign investment
Sunday, 17 June 2018
Bioengineering
Biological engineering or bio-engineering is the application of principles of biology and the tools of engineering to create usable, tangible, economically viable products.[1] Biological engineering employs knowledge and expertise from a number of pure and applied sciences,[2]such as mass and heat transfer, kinetics, biocatalysts, biomechanics, bioinformatics, separation and purification processes, bioreactor design, surface science, fluid mechanics, thermodynamics, and polymer science. It is used in the design of medical devices, diagnostic equipment, biocompatible materials, renewable bioenergy, ecological engineering, agricultural engineering, and other areas that improve the living standards of societies.
In general, biological engineers attempt to either mimic biological systems to create products or modify and control biological systems so that they can replace, augment, sustain, or predict chemical and mechanical processes.[3] Bioengineers can apply their expertise to other applications of engineering and biotechnology, including genetic modification of plants and microorganisms, bioprocess engineering, and biocatalysis.
History[edit]
Biological engineering is a science-based discipline founded upon the biological sciences in the same way that chemical engineering, electrical engineering, and mechanical engineering[4] can be based upon chemistry, electricity and magnetism, and classical mechanics, respectively.[5]
Before WWII, biological engineering had just begun being recognized as a branch of engineering, and was a very new concept to people. Post-WWII, it started to grow more rapidly, partially due to the term "bioengineering" being coined by British scientist and broadcaster Heinz Wolff in 1954 at the National Institute for Medical Research. Wolff graduated that same year and became the director of the Division of Biological Engineering at the university. This was the first time Bioengineering was recognized as its own branch at a university. Electrical engineering is considered to pioneer this engineering sector due to its work with medical devices and machinery during this time[6].When engineers and life scientists started working together, they recognized the problem that the engineers didn't know enough about the actual biology behind their work. To resolve this problem, engineers who wanted to get into biological engineering devoted more of their time and studies to the details and processes that go into fields such as biology, psychology, and medicine[7].The term biological engineering may also be applied to environmental modifications such as surface soil protection, slope stabilization, watercourse and shoreline protection, windbreaks, vegetation barriers including noise barriers and visual screens, and the ecological enhancement of an area. Because other engineering disciplines also address living organisms, the term biological engineering can be applied more broadly to include agricultural engineering.
The first biological engineering program was created at University of California, San Diego in 1966, making it the first biological engineering curriculum in the United States.[8] More recent programs have been launched at MIT[9] and Utah State University.[10] Many old agricultural engineering departments in universities over the world have re-branded themselves as agricultural and biological engineering or agricultural and biosystems engineering, due to biological engineering as a whole being a rapidly developing field with fluid categorization. According to Professor Doug Lauffenburger of MIT,[9][11] biological engineering has a broad base which applies engineering principles to an enormous range of size and complexities of systems. These systems range from the molecular level (molecular biology, biochemistry, microbiology, pharmacology, protein chemistry, cytology, immunology, neurobiology and neuroscience) to cellular and tissue-based systems (including devices and sensors), to whole macroscopic organisms (plants, animals), and can even range up to entire ecosystems.
Education[edit]
The average length of study is three to five years, and the completed degree is signified as a bachelor of engineering (B.S. in engineering). Fundamental courses include thermodynamics, fluid and mechanical dynamics, kinetics, electronics, and materials properties.[12][13]
Sub-disciplines[edit]
Depending on the institution and particular definitional boundaries employed, some major branches of bioengineering may be categorized as (note these may overlap):
- Biomedical Engineering: application of engineering principles and design concepts to medicine and biology for healthcare purposes[14]
- Biochemical Engineering: fermentation engineering, application of engineering principles to microscopic biological systems that are used to create new products by synthesis, including the production of protein from suitable raw materials[14]
- Biological Systems Engineering: application of engineering principles and design concepts to agriculture, food sciences, and ecosystems.[4]
- Bioprocess Engineering: develops technology to monitor the conditions of the where the process of making pharmaceuticals takes place[14], (Ex: bioprocess design, biocatalysis, bioseparation, bioinformatics, bioenergy)
- Environmental Health Engineering: application of engineering principles to the control of the environment for the health, comfort, and safety of human beings. It includes the field of life-support systems for the exploration of outer space and the ocean[14]
- Human-Factors Engineering: application of engineering, physiology, and psychology to the optimization of the human–machine relationship[14]
- Biotechnology: the use of living systems and organisms to develop or make products[15]. (Ex: pharmaceuticals)[14]
- Biomimetics: the imitation of models, systems, and elements of nature for the purpose of solving complex human problems. (Ex: velcro, designed after George de Mestral noticed how easily burs stuck to a dog's hair)[16]\
- Bioelectrical Engineering:
- Biomechanical Engineering:
- Bionics: an integration of Biomedical, focused more on the robotics and assisted technologies. (Ex: prosthetics)[14]
- Bioprinting: utilizing biomaterials to print organs and new tissues[17]
- Biorobotics: (Ex: prosthetics)
- Systems Biology: The study of biological systems.
Organizations
Organizations[edit]
- Accreditation Board for Engineering and Technology (ABET),[18] the U.S.-based accreditation board for engineering B.S. programs, makes a distinction between biomedical engineering and biological engineering, though there is much overlap (see above).
- American Institute for Medical and Biological Engineering (AIMBE) is made up of 1,500 members. Their main goal is to educate the public about the value biological engineering has in our world, as well as invest in research and other programs to advance the field. They give out awards to those dedicated to innovation in the field, and awards of achievement in the field. (They do not have a direct contribution TO biological engineering, they more recognize those who do and encourage the public to continue that forward movement)[19]
- Institute of Biological Engineering (IBE) is a non-profit organization, they run on donations alone. They aim to encourage the public to learn and to continue advancements in biological engineering. (Like AIMBE, they don't do research directly, they do however offer scholarships to students who show promise in the field)[20].
Saturday, 16 June 2018
Biotechnology
Biotechnology is the use of living systems and organisms to develop or make products, or "any technological application that uses biological systems, living organisms, or derivatives thereof, to make or modify products or processes for specific use" (UN Convention on Biological Diversity, Art. 2).[1] Depending on the tools and applications, it often overlaps with the (related) fields of bioengineering, biomedical engineering, biomanufacturing, molecular engineering, etc.
For thousands of years, humankind has used biotechnology in agriculture, food production, and medicine.[2] The term is largely believed to have been coined in 1919 by Hungarian engineer Károly Ereky. In the late 20th and early 21st centuries, biotechnology has expanded to include new and diverse sciences such as genomics, recombinant gene techniques, applied immunology, and development of pharmaceutical therapies and diagnostic test
Definitions[edit]
The wide concept of "biotech" or "biotechnology" encompasses a wide range of procedures for modifying living organisms according to human purposes, going back to domesticationof animals, cultivation of the plants, and "improvements" to these through breeding programs that employ artificial selection and hybridization. Modern usage also includes genetic engineering as well as cell and tissue culture technologies. The American Chemical Society defines biotechnology as the application of biological organisms, systems, or processes by various industries to learning about the science of life and the improvement of the value of materials and organisms such as pharmaceuticals, crops, and livestock.[3] As per European Federation of Biotechnology, biotechnology is the integration of natural science and organisms, cells, parts thereof, and molecular analogues for products and services.[4]Biotechnology also writes on[clarification needed] the pure biological sciences (animal cell culture, biochemistry, cell biology, embryology, genetics, microbiology, and molecular biology). In many instances, it is also dependent on knowledge and methods from outside the sphere of biology including:
- bioinformatics, a new brand of computer science
- bioprocess engineering
- biorobotics
- chemical engineering
Conversely, modern biological sciences (including even concepts such as molecular ecology) are intimately entwined and heavily dependent on the methods developed through biotechnology and what is commonly thought of as the life sciences industry. Biotechnology is the research and development in the laboratory using bioinformatics for exploration, extraction, exploitation and production from any living organisms and any source of biomass by means of biochemical engineering where high value-added products could be planned (reproduced by biosynthesis, for example), forecasted, formulated, developed, manufactured, and marketed for the purpose of sustainable operations (for the return from bottomless initial investment on R & D) and gaining durable patents rights (for exclusives rights for sales, and prior to this to receive national and international approval from the results on animal experiment and human experiment, especially on the pharmaceutical branch of biotechnology to prevent any undetected side-effects or safety concerns by using the products).[5][6][7]
By contrast, bioengineering is generally thought of as a related field that more heavily emphasizes higher systems approaches (not necessarily the altering or using of biological materials directly) for interfacing with and utilizing living things. Bioengineering is the application of the principles of engineering and natural sciences to tissues, cells and molecules. This can be considered as the use of knowledge from working with and manipulating biology to achieve a result that can improve functions in plants and animals.[8] Relatedly, biomedical engineering is an overlapping field that often draws upon and applies biotechnology (by various definitions), especially in certain sub-fields of biomedical or chemical engineering such as tissue engineering, biopharmaceutical engineering, and genetic engineering.
History[edit]
Main article: History of biotechnology
Although not normally what first comes to mind, many forms of human-derived agriculture clearly fit the broad definition of "'utilizing a biotechnological system to make products". Indeed, the cultivation of plants may be viewed as the earliest biotechnological enterprise.
Agriculture has been theorized to have become the dominant way of producing food since the Neolithic Revolution. Through early biotechnology, the earliest farmers selected and bred the best suited crops, having the highest yields, to produce enough food to support a growing population. As crops and fields became increasingly large and difficult to maintain, it was discovered that specific organisms and their by-products could effectively fertilize, restore nitrogen, and control pests. Throughout the history of agriculture, farmers have inadvertently altered the genetics of their crops through introducing them to new environments and breeding them with other plants — one of the first forms of biotechnology.
These processes also were included in early fermentation of beer.[9] These processes were introduced in early Mesopotamia, Egypt, Chinaand India, and still use the same basic biological methods. In brewing, malted grains (containing enzymes) convert starch from grains into sugar and then adding specific yeasts to produce beer. In this process, carbohydrates in the grains broke down into alcohols, such as ethanol. Later, other cultures produced the process of lactic acid fermentation, which produced other preserved foods, such as soy sauce. Fermentation was also used in this time period to produce leavened bread. Although the process of fermentation was not fully understood until Louis Pasteur's work in 1857, it is still the first use of biotechnology to convert a food source into another form.
Before the time of Charles Darwin's work and life, animal and plant scientists had already used selective breeding. Darwin added to that body of work with his scientific observations about the ability of science to change species. These accounts contributed to Darwin's theory of natural selection.[10]
For thousands of years, humans have used selective breeding to improve production of crops and livestock to use them for food. In selective breeding, organisms with desirable characteristics are mated to produce offspring with the same characteristics. For example, this technique was used with corn to produce the largest and sweetest crops.[11]
In the early twentieth century scientists gained a greater understanding of microbiology and explored ways of manufacturing specific products. In 1917, Chaim Weizmann first used a pure microbiological culture in an industrial process, that of manufacturing corn starch using Clostridium acetobutylicum, to produce acetone, which the United Kingdom desperately needed to manufacture explosives during World War I.[12]
Biotechnology has also led to the development of antibiotics. In 1928, Alexander Fleming discovered the mold Penicillium. His work led to the purification of the antibiotic compound formed by the mold by Howard Florey, Ernst Boris Chain and Norman Heatley – to form what we today know as penicillin. In 1940, penicillin became available for medicinal use to treat bacterial infections in humans.[11]
The field of modern biotechnology is generally thought of as having been born in 1971 when Paul Berg's (Stanford) experiments in gene splicing had early success. Herbert W. Boyer (Univ. Calif. at San Francisco) and Stanley N. Cohen (Stanford) significantly advanced the new technology in 1972 by transferring genetic material into a bacterium, such that the imported material would be reproduced. The commercial viability of a biotechnology industry was significantly expanded on June 16, 1980, when the United States Supreme Courtruled that a genetically modified microorganism could be patented in the case of Diamond v. Chakrabarty.[13] Indian-born Ananda Chakrabarty, working for General Electric, had modified a bacterium (of the genus Pseudomonas) capable of breaking down crude oil, which he proposed to use in treating oil spills. (Chakrabarty's work did not involve gene manipulation but rather the transfer of entire organelles between strains of the Pseudomonas bacterium.
Revenue in the industry is expected to grow by 12.9% in 2008. Another factor influencing the biotechnology sector's success is improved intellectual property rights legislation—and enforcement—worldwide, as well as strengthened demand for medical and pharmaceutical products to cope with an ageing, and ailing, U.S. population.[14]
Rising demand for biofuels is expected to be good news for the biotechnology sector, with the Department of Energy estimating ethanol usage could reduce U.S. petroleum-derived fuel consumption by up to 30% by 2030. The biotechnology sector has allowed the U.S. farming industry to rapidly increase its supply of corn and soybeans—the main inputs into biofuels—by developing genetically modified seeds that resist pests and drought. By increasing farm productivity, biotechnology boosts biofuel production.[15]
Examples[edit]
Biotechnology has applications in four major industrial areas, including health care (medical), crop production and agriculture, non food (industrial) uses of crops and other products (e.g. biodegradable plastics, vegetable oil, biofuels), and environmental uses.
For example, one application of biotechnology is the directed use of organisms for the manufacture of organic products (examples include beer and milk products). Another example is using naturally present bacteria by the mining industry in bioleaching. Biotechnology is also used to recycle, treat waste, clean up sites contaminated by industrial activities (bioremediation), and also to produce biological weapons.
A series of derived terms have been coined to identify several branches of biotechnology; for example:
- Bioinformatics is an interdisciplinary field that addresses biological problems using computational techniques, and makes the rapid organization as well as analysis of biological data possible. The field may also be referred to as computational biology, and can be defined as, "conceptualizing biology in terms of molecules and then applying informatics techniques to understand and organize the information associated with these molecules, on a large scale."[16] Bioinformatics plays a key role in various areas, such as functional genomics, structural genomics, and proteomics, and forms a key component in the biotechnology and pharmaceutical sector.
- Blue biotechnology is a term that has been used to describe the marine and aquatic applications of biotechnology, but its use is relatively rare.
- Green biotechnology is biotechnology applied to agricultural processes. An example would be the selection and domestication of plants via micropropagation. Another example is the designing of transgenic plants to grow under specific environments in the presence (or absence) of chemicals. One hope is that green biotechnology might produce more environmentally friendly solutions than traditional industrial agriculture. An example of this is the engineering of a plant to express a pesticide, thereby ending the need of external application of pesticides. An example of this would be Bt corn. Whether or not green biotechnology products such as this are ultimately more environmentally friendly is a topic of considerable debate.
- Red biotechnology is applied to medical processes. Some examples are the designing of organisms to produce antibiotics, and the engineering of genetic cures through genetic manipulation.
- White biotechnology, also known as industrial biotechnology, is biotechnology applied to industrial processes. An example is the designing of an organism to produce a useful chemical. Another example is the using of enzymes as industrial catalysts to either produce valuable chemicals or destroy hazardous/polluting chemicals. White biotechnology tends to consume less in resources than traditional processes used to produce industrial goods.[17]
The investment and economic output of all of these types of applied biotechnologies is termed as "bioeconomy".
Medicine[edit]
In medicine, modern biotechnology finds many applications in areas such as pharmaceutical drug discoveries and production, pharmacogenomics, and genetic testing (or genetic screening).
Pharmacogenomics (a combination of pharmacology and genomics) is the technology that analyses how genetic makeup affects an individual's response to drugs.[18] It deals with the influence of genetic variation on drug responses in patients by correlating gene expressionor single-nucleotide polymorphisms with a drug's efficacy or toxicity.[19] By doing so, pharmacogenomics aims to develop rational means to optimize drug therapy, with respect to the patients' genotype, to ensure maximum efficacy with minimal adverse effects.[20] Such approaches promise the advent of "personalized medicine"; in which drugs and drug combinations are optimized for each individual's unique genetic makeup.[21][22]
Biotechnology has contributed to the discovery and manufacturing of traditional small molecule pharmaceutical drugs as well as drugs that are the product of biotechnology – biopharmaceutics. Modern biotechnology can be used to manufacture existing medicines relatively easily and cheaply. The first genetically engineered products were medicines designed to treat human diseases. To cite one example, in 1978 Genentech developed synthetic humanized insulin by joining its gene with a plasmid vector inserted into the bacterium Escherichia coli. Insulin, widely used for the treatment of diabetes, was previously extracted from the pancreas of abattoir animals (cattle or pigs). The resulting genetically engineered bacterium enabled the production of vast quantities of synthetic human insulin at relatively low cost.[23][24]Biotechnology has also enabled emerging therapeutics like gene therapy. The application of biotechnology to basic science (for example through the Human Genome Project) has also dramatically improved our understanding of biology and as our scientific knowledge of normal and disease biology has increased, our ability to develop new medicines to treat previously untreatable diseases has increased as well.[24]
Genetic testing allows the genetic diagnosis of vulnerabilities to inherited diseases, and can also be used to determine a child's parentage (genetic mother and father) or in general a person's ancestry. In addition to studying chromosomes to the level of individual genes, genetic testing in a broader sense includes biochemical tests for the possible presence of genetic diseases, or mutant forms of genes associated with increased risk of developing genetic disorders. Genetic testing identifies changes in chromosomes, genes, or proteins.[25] Most of the time, testing is used to find changes that are associated with inherited disorders. The results of a genetic test can confirm or rule out a suspected genetic condition or help determine a person's chance of developing or passing on a genetic disorder. As of 2011 several hundred genetic tests were in use.[26][27] Since genetic testing may open up ethical or psychological problems, genetic testing is often accompanied by genetic counseling.
Agriculture[edit]
Genetically modified crops ("GM crops", or "biotech crops") are plants used in agriculture, the DNA of which has been modified with genetic engineering techniques. In most cases, the main aim is to introduce a new trait that does not occur naturally in the species.
Examples in food crops include resistance to certain pests,[28] diseases,[29] stressful environmental conditions,[30] resistance to chemical treatments (e.g. resistance to a herbicide[31]), reduction of spoilage,[32] or improving the nutrient profile of the crop.[33] Examples in non-food crops include production of pharmaceutical agents,[34] biofuels,[35] and other industrially useful goods,[36] as well as for bioremediation.[37][38]
Farmers have widely adopted GM technology. Between 1996 and 2011, the total surface area of land cultivated with GM crops had increased by a factor of 94, from 17,000 square kilometers (4,200,000 acres) to 1,600,000 km2 (395 million acres).[39] 10% of the world's crop lands were planted with GM crops in 2010.[39] As of 2011, 11 different transgenic crops were grown commercially on 395 million acres (160 million hectares) in 29 countries such as the USA, Brazil, Argentina, India, Canada, China, Paraguay, Pakistan, South Africa, Uruguay, Bolivia, Australia, Philippines, Myanmar, Burkina Faso, Mexico and Spain.[39]
Genetically modified foods are foods produced from organisms that have had specific changes introduced into their DNA with the methods of genetic engineering. These techniques have allowed for the introduction of new crop traits as well as a far greater control over a food's genetic structure than previously afforded by methods such as selective breeding and mutation breeding.[40] Commercial sale of genetically modified foods began in 1994, when Calgene first marketed its Flavr Savr delayed ripening tomato.[41] To date most genetic modification of foods have primarily focused on cash crops in high demand by farmers such as soybean, corn, canola, and cotton seed oil. These have been engineered for resistance to pathogens and herbicides and better nutrient profiles. GM livestock have also been experimentally developed, although as of November 2013 none are currently on the market.[42]
There is a scientific consensus[43][44][45][46] that currently available food derived from GM crops poses no greater risk to human health than conventional food,[47][48][49][50][51] but that each GM food must be tested on a case-by-case basis before introduction.[52][53][54] Nonetheless, members of the public are much less likely than scientists to perceive GM foods as safe.[55][56][57][58] The legal and regulatory status of GM foods varies by country, with some nations banning or restricting them, and others permitting them with widely differing degrees of regulation.[59][60][61][62]
GM crops also provide a number of ecological benefits, if not used in excess.[63] However, opponents have objected to GM crops per se on several grounds, including environmental concerns, whether food produced from GM crops is safe, whether GM crops are needed to address the world's food needs, and economic concerns raised by the fact these organisms are subject to intellectual property law.
Industrial[edit]
Industrial biotechnology (known mainly in Europe as white biotechnology) is the application of biotechnology for industrial purposes, including industrial fermentation. It includes the practice of using cells such as micro-organisms, or components of cells like enzymes, to generate industrially useful products in sectors such as chemicals, food and feed, detergents, paper and pulp, textiles and biofuels.[64] In doing so, biotechnology uses renewable raw materials and may contribute to lowering greenhouse gas emissions and moving away from a petrochemical-based economy.[65]
Environmental[edit]
The environment can be affected by biotechnologies, both positively and adversely. Vallero and others have argued that the difference between beneficial biotechnology (e.g.bioremediation is to clean up an oil spill or hazard chemical leak) versus the adverse effects stemming from biotechnological enterprises (e.g. flow of genetic material from transgenic organisms into wild strains) can be seen as applications and implications, respectively.[66] Cleaning up environmental wastes is an example of an application of environmental biotechnology; whereas loss of biodiversity or loss of containment of a harmful microbe are examples of environmental implications of biotechnology.
Regulation[edit]
Main articles: Regulation of genetic engineering and Regulation of the release of genetic modified organisms
The regulation of genetic engineering concerns approaches taken by governments to assess and manage the risks associated with the use of genetic engineering technology, and the development and release of genetically modified organisms (GMO), including genetically modified crops and genetically modified fish. There are differences in the regulation of GMOs between countries, with some of the most marked differences occurring between the USA and Europe.[67] Regulation varies in a given country depending on the intended use of the products of the genetic engineering. For example, a crop not intended for food use is generally not reviewed by authorities responsible for food safety.[68] The European Union differentiates between approval for cultivation within the EU and approval for import and processing. While only a few GMOs have been approved for cultivation in the EU a number of GMOs have been approved for import and processing.[69] The cultivation of GMOs has triggered a debate about coexistence of GM and non GM crops. Depending on the coexistence regulations incentives for cultivation of GM crops differ.[70]
Learning[edit]
In 1988, after prompting from the United States Congress, the National Institute of General Medical Sciences (National Institutes of Health) (NIGMS) instituted a funding mechanism for biotechnology training. Universities nationwide compete for these funds to establish Biotechnology Training Programs (BTPs). Each successful application is generally funded for five years then must be competitively renewed. Graduate students in turn compete for acceptance into a BTP; if accepted, then stipend, tuition and health insurance support is provided for two or three years during the course of their Ph.D. thesis work. Nineteen institutions offer NIGMS supported BTPs.[71] Biotechnology training is also offered at the undergraduate level and in community colleges.
Subscribe to:
Posts (Atom)